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Synthesis of Optimum Finline Tapers Using
Dispersion Formulas for Arbitrary Slot
Widths and Locations

CHRISTIAN SCHIEBLICH, JERZY K. PIOTROWSKI, AND J. H. HINKEN, SENIOR MEMBER, IEEE

Abstract —The theory of TEM matching sections has been modified so
that it can be applied to finline tapers. A step-by-step procedure is given to
calculate the taper contour for a given maximum VSWR. The taper is
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optimum in the sense that its length is the shortest possible for the required
VSWR. To achieve fast convergence, a transversal resonance method was
developed to calculate finline dispersion, which is valid for arbitrary slot
widths and slot locations. The finline can be unilateral as well as bilateral,
and the slot may be off-centered. The dispersion data are compared with
values found in the literature, and the calculated taper performance with
the authors’ own measurements, both showing good agreement.

1. INTRODUCTION

INLINE COMPONENTS have attracted much at-
tention due to their favorable properties, such as
broad single-mode bandwidth, moderate attenuation, sim-
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ple fabrication, and integration feasibility. For the design
of such components, even if they are planned for a later
integration, low return loss transitions to other waveguides
are essential. Transitions in the final device should be as
short as possible to achieve compactness and low insertion
loss. This contribution deals with tapers between different
slot widths with the above-mentioned features, and particu-
larly transitions between finline and rectangular hollow
waveguide. The slot may be located arbitrarily on the
substrate. The computation is very fast, because an easily
evaluated transversal resonance method is sufficient to
obtain the slot profile.

II. TEM THEORY

The taper design for TEM structures is well-known from
the literature. The input reflection coefficient is [1]

R(,B)=—f01x_+(z’)e“2’ﬁzéiz’ (1)

with k ~* (z) the z-dependent coupling coefficient between
the backward and the forward traveling fundamental wave,
! the length of the taper, and 8 = 277f‘/;ﬁ the non-z-depen-
dent phase constant. From (1), ¥ ~*(z) can be deduced by
Fourier transformation, and solutions are known which
hold the input reflection coefficient R below a certain
value R, for phase constants B> B,, thus achieving a
high-pass performance. '
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According to [2], an expression equivalent to (1) can be
found for non-TEM waves if we approximate the coupling
coefficient

TAPER SYNTHESIS FOR NON-TEM STRUCTURES

k= (f,2)=x""(fo,2) )
by its value at a fixed frequency f,. Furthermore, we
approximate the integral

fOZZB(f,Z’) dz’=n(f)-£(z) (3)

as a product of a purely frequency-dependent and a purely
z-dependent factor. n(f) is normalized so that n(f,)=1.
This results in

R(n)=[* CK(£)emat ()
~8
with 8 = £(/) = — £(0) and
. —- K_+(f07€)
RO = 2 8) 2

The integral in (4) is of the same type as (1), and the
coupling distributions for C-K(¢) known from TEM the-
ory can be applied.

IV. Non-TEM THeORY FOR THE COUPLING
COEFFICIENT IN FINLINE

If we have a relation between k ~* (fy, §) and B(f,, £),
the function B( f,, £) can be evaluated from CK(§). In fact,
on certain assumptions, both values can be expressed with
the local cutoff frequency f.(z) as a parameter.
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According to [3], the coupling coefficient ¥ ~* in an
empty waveguide with arbitrary and varying cross section

is
. 1 4Z,
=C11._._
\/Z1 dz

where Z, is the field-wave impedance.

The finline taper is modeled by a double ridge wave-
guide with varying gap s. With tan¢, = ds /dz, C;; for the
fundamental mode ( H mode) can be written as an integral
along both foreheads of the ridges

(6)

K

(7)

E,, is the electric-field distribution normalized to the power
1 of the fundamental mode if ¢, =0.
According to [2], (7) simplifies to
_1d.

f.odz’

ZI=V“0/£O/V1_(fc/f)2

(6) and (8) result in
o =W/ 1 4

Cp=-— ZL tano, E2dl..
1 L, L,

Ch= (8)

With

(9)

Equation (9) has been derived on the following assump-
tions:

® |tan¢,| <1, i.e., smoothly varying slot contour,

® negligible longitudinal magnetic-field components on
and negligible transversal current density across the
forehead of the ridge (i.e., along the thickness of the
finline metallization) [2],

® TE character of the fundamental mode.

The latter assumption follows from the ridge-waveguide
model. Although the field distribution is not the same, the
dielectric substrate in real finlines can be considered by an
effective dielectric constant k,, which lowers the cutoff
frequency f,. With this cutoff frequency inserted in (9) and

the relation
B =2affeqpo k. V1~ (f./f)

(5) can be evaluated.

(10)

V. DISTRIBUTION OF THE COUPLING COEFFICIENT

In (4), the integrand is split into a é-dependent part and
the normalizing constant C, so that

jfgx(g)dg=1. (11)

Integrating (5) from £ = — 6 to @ with (9), (2), and d§=
2B( fy, 2) dz from (3) yields

( £.0) ) 1~(fc(l)/fo)2}. 1)

_1
= 1-(£.00)/£,)
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Integrating (5) from — 8 to £ resuits in the &-dependent
cutoff frequency

£.(8) = £.00)-[E/2+F24+ (1= F)-exp(4CI(2)) |
(13)

with F = (£.0)/f,)* and
J(g)zf:K(g') dg’.

The coupling distribution K(§) along the taper must be
chosen so that the reflection coefficient is below a certain
value R, for frequencies f> f;. In [3], a procedure is
given to evaluate the coefficients a, in the Fourier series

2n+1

K(&= X

i=1,3,---

7§
a, cos(z ) ) (14)
so that the reflection coefficient R(n) from (4) reaches the
value R, n times for 7>1 (i.e, n equal ripples for
f > f,). With an infinite number of terms, (14) becomes the
Dolph-Chebyshev distribution.
It is characterized by

D Il(avl—(£/0)2)

K(©)-3

21 i-(e0)

+8(£—-0)+8(¢+0)

(15)
for —0<$<6 with D=R_ /C,0=arcosh(l1/D), I,(x)
the modified Bessel function of the first order, and 8(¢)
Dirac’s delta function.

The shape of the function K(£) in (14) with n=4
compared with that of (15) is shown in Fig. 1 with D = 0.01
in both cases. The functions are even in £, so only the
branch for £ > 0 is shown. The shapes of K(¢) are similar
where both are nonzero. The Dirac¢’s function at £=46
makes the Dolph—Chebyshev distribution the shortest pos-
sible taper for a given reflection loss.

Due to the normalization (11) and the symmetry K(¢) =
K(— §) we can evaluate the integral in (13)

2 L{6y1— y?
e ) g
1(¢) = S
0, foré=--0
i, foré=40
(16)

The Bessel function in (16) can be expanded in a power
series [4], and the integral in (16) can be evaluated by
integrating it term by term.

This expansion was previously published in [5], but
because of some misprints there, we give the result once
more

le(e 1—y2)

h 61— »°

dy = Z agb,
k=0
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Fig 1. Normalized coupling distribution for D = 0.01.
Dolph—Chebyshev (15). ---- cosine-series n = 4 (14).
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02
a,=1 a,=————da,; _
0 Eoak(k+1) 1
X k
Z(1-x2)*+2kb,_,
X =2 (17)
b= = =
02 k 2k+1

The series converges rapidly, and taking only 12 terms
makes the relative error smaller than 10 ~ 5,

Dirac’s function in (15) produces discontinuities at the
taper ends, a fact which might cause problems due to the
excitation of higher order modes. The step in cutoff
frequency can be calculated from (12), (13), and (16)

£(+0) _ - 120)
£.00) " 2f3 - £2(0)

The discontinuity at the taper end with the narrow slot is
even smaller. The lower the R, chosen, the smaller the
step. For R, =001 (£ —40 dB) and f,=1.4 £(0), the
ratio in (18) is 0.997. The Fourier series distribution (14)
does not have this discontinuity. Comparative measure-
ments with both taper types showed that the influence of
the step is negligible.

1-R

(18)

VI. SYNTHESIZING THE SLOT CONTOUR

Up to now, we have been able to synthesize the function
of the cutoff frequency f, along the taper. It should be
noted that no wave impedances are required for this
synthesis, thus avoiding the problem of finding the ap-
propriate impedance definition.

To obtain the slot width, we need a relation between slot
width and cutoff frequency. This relation should be easy to
evaluate, because it is called at every knot on the z axis. It
is inconvenient to apply spectral-domain techniques [6]-[9],
which are very precise, but time-consuming. The simple
formulas of [10] are limited to special values for the permit-
tivity of the substrate and are not valid for large slot
widths, [11] gives no data for small slot widths, and the
accuracy of the results in [12] seems too poor.
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VH.

A new attempt was therefore made to evaluate cutoff
frequency and effective permittivity by a transversal reso-
nance method. The method is valid for arbitrary slot
widths and slot locations. The computed results are com-
pared with data from {8], [10], [11], and [13]. .

The analysis is based on the following simplifications:

TRANSVERSAL RESONANCE CONDITION

@ isotropic, homogeneous, and lossless dielectric layer,

® zero-thickness metallization with infinite conductiv-
ity,

@ thickness of substrate small compared with wave-
guide width,

® symmetrically located substrate.

In the dispersion relation (10) for the phase constant S,
which underlies our taper synthesis, the effective dielectric
constant k, may be approximated as frequency-indepen-
dent [14]

ke= (ch/fc)2 (19)

with f,, the cutoff frequency of a finline of the same
dimensions and a substrate’s permittivity ¢. =1. Equation
(10) is then the dispersion of a homogeneously filled wave-
guide. In the following, our task will be to find the cutoff
frequencies f, and f,,.

A. Bilateral Finline

The cross section of a bilateral finline and its equivalent
transverse network at cutoff are shown in Fig. 2. The

finline is symmetrical with respect to the x = a/2 plane, .

where the admittance in the x-direction at cutoff is zero.
The equivalent transverse network for the dominant mode
consists of a capacitive susceptance shunting the TEM
transmission line with short-circuit termination. The cutoff
wavenumber & is determined by the resonance condition
at reference plane T

B,

—cot{k1)+===0 (20)
Yb
with
B, b
?;-—;'kx‘(Pw‘i‘er'Pd) (21)
where
P, =In(csc(a,,)-csc(B,)) (22)
P,=r, arctan( ;1—) +Iny1+ 7} (23)
d
and
_T.s -4
a, = 2'b Ta=73 -
ar e
B.=5(1-23).

The field distortions by the metal fins have been modeled
by the susceptance jB, which is composed of two parts.
The first part models the field distortions left of reference

1641

(@

T
y | d !
b
£ 21
€ e Eoiq_ €
¥
0 1] X
(/] T a

iBy

(b) y T
Lo T
T

Fig. 2. The cross section of (a) a bilateral finline and (b) its equivalent
transverse network.
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Fig. 3. Dispersion of a bilateral finline with slot centered in waveguide.

Simons and Tech [13). ©® Our approximation.

plane T. It is taken from Marcuvitz’s Waveguide Handbook
[15, p. 218], where the susceptance of a window of zero
thickness in a rectangular waveguide has been derived. In
fact, it is sufficient to take just the first term in P, into
account (22) because the other terms influence the results
by less than 0.2 percent.

The second part models the field distortion between
plane T and the symmetry plane x =a/2. It has been
taken from the equivalent circuit of an open E-plane T
junction (see [15, p. 337]). Due to the symmetry with
respect to x'=a /2, this part of the susceptance is char-
acterized only by the susceptance jB, of the equivalent
circuit in [15].

The first zero of k, in (20) is the cutoff wavenumber for
the fundamental mode. The cutoff frequencies f,, and f,
are obtained from k, with e, =1 and e, #1, respectively.
Numerical results have been compared to those takeii from
[10] and a disagreement of less than 1 percent has been
found. (Setting &, = 2.22, ( F AT -b) varies between 0.1
and 0.2 for d/b between 1/32 and 3/4. In all cases, the
deviations are smaller than 0.001.) Fig. 3 shows dispersion
in a bilateral finline of relatively small slot width. The
agreement with results taken from [13] is very good.
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Fig. 4. The cross section of (a) a unilateral finline, (b) its equivalent
transverse network for g, =1, and (c) for ¢, #1.

B. Unilateral Finline

Unilateral finline is often preferred because it is easy to
fabricate and semiconductor devices are simple to mount.
The cross section of this finline is shown in Fig. 4. The thin
metal layer is placed at the x =a/2 plane, so that the
structure is symmetrical for e, =1. It is useful to construct
two equivalent transverse networks at cutoff for the domi-
nant mode: one for £, =1 and another for ¢, #1 (Fig. 4).
The equivalent network for e,=1 consists simply of a
transmission line of length a /2 which is short-circuited at
one end and shunted by jB, at the other. The shunt
susceptance can be taken from (21) and (22).

The cutoff wavenumber k., in the air-filled ridged
waveguide is determined by the resonance condition at
reference plane T

B
—cot(k o l)+ =0 (24)
2 Yb
with
B, b
X, ~ 7 o P (25)

P, is given by (22). The equivalent network in Fig. 4(c) is
formed by a susceptance jB, shunted by two TEM trans-
mission lines with short-circuit terminations. The relation
governing cutoff of the H,, mode is given by

—cot(kyl)—cotlk, (1= d)]+ 24 =0 (26)

with
B, b

= k. [2P,+¢(P,+ P,)] (27)

Y, =
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Fig. 5. Dispersion of unilateral finline with (a) WR(28) and (b) WR(19)
shield. Fins are centered. Spectral-domain technique; Knorr and
Shayda [8]. © Our approximation.

where
1
Po=r, arctan( ;;) +Iny1+r; (28)
and
d
rp,= Z; .

The susceptance jB, has been constructed by superpos-
ing the susceptance of the window (the term proportional
to 2P,) and another susceptance (the term proportional to
e,( P, + P,)) representing the influence of the dielectric and
the transformation through the layer of length 4. While P,
(22) and P, (23) have already been given, P, in (28) has
been taken from [15, p. 337].

The unilateral finline with metal fins centered in the
waveguide (Fig. 4) has been analyzed in [8], [10], and [13].
Other authors have considered a unilateral finline with the
dielectric layer symmetrically located in the waveguide [6],
[9]. The modifications of (24) and (26) for this case are easy
to carry out.
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2 mm
I —»
Fig. 6. Taper contour. Design data: f, =12.3 GHz, R, = —30dB. —
——Dolph—Chebyshev. ----cosine-series n = 4.

L] 2 4 [ L] 1 12 *“ 1% 1 »

15 16 17 18
f/6Hz

Fig. 7. Return loss of double taper according to Fig,. 6,
Dolph-Chebyshev.

Comparing the cutoff wavenumber of the unilateral
finline with results published in [10] yields deviations of
less than 1.5 percent if d/a<1/8. This restriction is,
however, usually fulfilled for practical finlines. Some dis-
persion curves are presented in Fig. 5 showing good agree-
ment (better than 3 percent) with published results. The
authors’ results deviate from those calculated with Hoefer’s
diagram for the slot capacitance [11] less than 0.5 percent.
This diagram, however, gives only data for a normalized
slot width s /b > 0.1.

VIIL

The synthesis procedure can now be summarized as
follows.

1) Choose the cutoff frequency f, of the taper and the
maximum input reflection coefficient R_, for f> f,.
Choose an appropriate step width Az for the longitudinal
coordinate. If the taper is eccentric, select a relation be-
tween slot width s and eccentricity e (Figs. 2(a) and 4(a))
to achieve a unique function s(f,) from the characteristic
equation. A linear function

e(s<z>)=e<o>+§§—j§—j—j%-<s(z>—s<o>)

SYNTHESIS PROCEDURE

(29)
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Fig. 8. Return loss of double taper R,,,, = —20 dB, Dolph—Chebyshev.
Measured, - - -- calculated.

guarantees that the slot edges never exceed the waveguide
height.

2) Determine f(0) and f.(/) from s(0) and s(/) and the
transverse resonance condition.

3) Determine the normalization factor C from (12).

4) Set initial values z =0, §=— 8, and s = 5(0).

5) Next take z: = z + Az. Evaluate the related £(z) from
(3) as & =&+2B(fy, 2)-Az, f, from (13), and s from the
transversal resonance condition with k= 2wfc\/l}—; m .

6) Repeat 5) until the final slot width is reached.

IX. EXPERIMENTAL RESULTS

Several double-tapers were fabricated on RT/Duroid
5880 in WR-62 (and WR-28) housing. They lead from the
empty waveguide to a slot width of 0.2 mm and back again
to the empty waveguide. The slot was located either in the
center or 3 mm (1.5 ram) below, R . was chosen to be
—20, —30, —35, —40, and —60 dB. To estimate the
influence of the steps in the Dolph-Chebyshev profile, a
set of tapers with the cosine-series coupling distribution
(14) was also made.

The dynamic range of the measurement equipment was
—40 dB (— 35 dB) for the reflection coefficient, restricted
by the waveguide termination behind the tapers. No dou-
ble-taper (except the 20-dB type) turned out to be worse
than —25 dB in the return loss from 12.4 to 18 GHz (26.5
to 40 GHz), and most of them were better than —30 dB.
The taper length for a taper designed for —30 dB is only
18 mm (8.2 mm), which is 0.75 free-space wavelengths at
the lower frequency limit.

The results of the measurements can be summarized as
follows.

1) There is no significant difference in the performance
of cosine-series and Dolph—Chebyshev profile tapers. The
steps in the profile apparently have no influence.
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Fig. 9. Return loss of double taper. Design data: fy =26 GHz, R, =
—30 dB, length 8.2 mm, centered slot.

2) Designing the taper for reflection loss better than
— 35 dB does not improve the performance. The taper may
even become worse. This probably means that the accuracy
limit of the transversal resonance method has been
reached. ' ’

3) Tapers with a return loss of —30 dB or better should
be fabricated within +5 percent in slot width.

For lower requirements, however, tolerances are not so
critical: For a maximum reflection coefficient of —20 dB,
a profile shift of +20 percent is admissible.

Fig. 6 shows the slot profile of a —30-dB Ku-band
eccentric taper with cosine-series and Dolph—Chebyshev
profile. Fig. 7 shows the input reflection of the corre-
sponding double taper. Fig. 8 compares the measured input
reflection of a 20-dB double taper compared with values
calculated by direct integration of the coupled wave equa-
tions [3] with phase constant 8(f, z) and coupling coeffi-
cient « ~* (f, z). Finally, Fig. 9 shows the performance of a
—30-dB taper in Ka-band. Insertion loss was about 0.3 dB
for any double taper.

X. CONCLUSION

A fast and precise method has been presented for the
design of optimum finline tapers with arbitrary slot widths
and locations. The method can be applied for tapers down
to — 35-dB return loss. An even better performance may be
obtained with a more exact relation between slot width and
cutoff frequency, involving more computer time. The prac-
tical results would be doubtful, however, because require-
ments for mechanical tolerances become very stringent.
The design procedure can also be applied to antipodal
finlines, provided that a relation between slot width and
cutoff frequency is known. The tapers have already been
successfully applied to finline circulators, phase modula-
tors, mixers, and oscillators.
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Short Papers

Quarter-Wave Matching of
Waveguide-to-Finline
Transitions

CORNELIUS J. VERVER, MEMBER, IEEE, AND WOLFGANG J.R. HOEFER, SENIOR MEMBER, IEEE

Abstract — This paper presents closed-form expressions for the design of
a quarter-wave transition-matching transformer. This structure takes. the
form of a notch or protrusion cut in the finline substrate at the waveguide-
to-finline interface. The dimensions of the transformer are calculated using
a homogeneous waveguide model for the partially loaded sections. The
characteristics of this model are found with perturbation theory. Several
transformers were designed and measured. A 5-dB improvement in return
loss over a full waveguide band is typical.

~ 1. INTRODUCTION

-PLANE CIRCUIT technology is now well established
Eas a viable approach to millimeter-wave circuit realiza-
tion and integration. Indeed, almost all important circuit
functions have been successfully realized in this technology
using integrated finline as the principal transmission
medium. E-plane circuits consist of metallic fin pattern
deposited on a thin substrate which is suspended in the
E-plane of a standard waveguide enclosure.

For obvious reasons, such circuits must be made compat-
ible with standard waveguide components and test
equipment. In most cases, this is accomplished through a
printed taper, a finline section in which the gap between
the fins is gradually narrowed from the waveguide height
b, to its final width d, as shown in Fig. 1.
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Fig. 1. Tapered waveguide to finline transition.

A critical look at Fig. 1 reveals that even for an optimal
taper profile the transition could not be reflectionless be- -
cause of the dielectric discontinuity at. the taper 'front. For
typical finline substrates and geometries, the return loss
due to this discontinuity is approximately 27 dB.

In order to minimize the effect of the “dielectric step,”
various researchers [1]-[5] have introduced a quarter-wave
transformer section in the form of either a notch or a
protrusion, as shown in Fig. 2.

One can only surmise from the literature that the dimen-
sions of these transformers have been determined by trial
and error. In this paper, therefore, design expressions will
be developed to determine the dimensions of quarter-wave
notches and protrusions. Measured data will be presented
to demonstrate the validity of the new formulas as well as
the improvement in reflection loss achieved by such a
structure. ' R

It may be noted here that in spite of the inherently
narrow bandwidth of quarter-wave transformers, the
improvement in return loss is significant over a complete
waveguide band, about 5 dB. Only for very broad-band
applications will it become necessary to use multistep-
transformers. However, in such a case, the waveguide en-
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