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Synthesis of Optimum Finline Tapers Using
Dispersion Formulas for Arbitrary Slot

Widths and Locations

CHRISTIAN SCHIEBLICH, JERZY K. PIOTROWSKI, AND J. H. HINKEN, SEN1ORMEMBER, IEEE

Abstract —The theory of TEM matching sections has been modified so

that it can be applied to finline tapers. A step-by-step procednre is given to

calculate the taper contour for a given maximum VSWR. The taper is
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optimum in the sense that its length is the shortest possible for the required

VSWR. To achieve fast convergence, a transversal resonance method was

developed to cafculate finfine dispersion, which is vafid for arbitrary slot

widths and slot locations. The finline can be unilateral as well as bilateraf,

and the slot may be off-centered. The dispersion data are compared with

values found in the literature, and the calculated taper performance with

the authors’ own measurements, both showing good agreement.

I. INTRODUCTION

F INLINE COMPONENTS have attracted much at-

tention due to their favorable properties, such as

broad single-mode bandwidth, moderate attenuation, sim-
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ple fabrication, and integration feasibility. For the design

of such components, even if they are planned for a later

integration, lowreturn loss transitions to other waveguides

are essential. Transitions in the final device should be as

short as possible to achieve compactness and low insertion

loss. This contribution deals with tapers between different

slot widths with the above-mentioned features, and particu-

larly transitions between firdine and rectangular hollow

waveguide. The slot may be located arbitrarily on the

substrate. The computation is very fast, because an easily

evaluated transversal resonance fnethod is sufficient to

obtain the slot profile.

II. TEM THEORY

The taper design for TEM structures is well-known from

the literature. The input reflection coefficient is [1]

R(@=-J’K -+(z’)e-%fz’ (1)
o

with ~”(z) the z-dependent coupling coefficient between

the backward and the forward traveling fundamental wave,

1 the length of the taper, and /?= 2 rffi the non-z-depen-

dent phase constant. From (l), K‘+ (z) can be deduced by

Fourier transformation, and solutions are known which

hold the input reflection coefficient R below a certain

value R ~= for phase constants /3> Bo, thus achieving a

high-pass performance.

III. TAPER SYNTHESIS FOR NoN-TEM STRUCTURES

According to [2], an expression equivalent to (1) can be

found for non-TEM waves if we ap~roximate the coupling

coefficient

K-+( f,z)=lc-+(jo, z) (2)

by its value at a fixed frequency jo. Furthermore, we

approximate the integral

pp(f>z’)dz’=w($ )$(z) (3)

as a product of a purely frequency-dependent and a purely

z-dependent factor. q(~) is normalized so that q(~o) = 1.

This results in

with O = $(1)= – C(O) and

K-+( fo>()c. K(t)= – ‘2p(fo, g) “ (5)

The integral in (4) is of the same type as (l), and the

coupling distributions for C. K($) known from TEM the-

ory can be applied.

IV. NoN-TEM THEORYFORTHE COUPLING
COEFFICIENTIN FINLINE

If we have a relation between K‘+ (j,, .$) and B(.fO, ~),

the function P( fo, $) can be evaluated from c~(t). In fact)
on certain assumptions, both values can be expressed with

the local cutoff frequency f,(z) as a parameter.

According to [3], the coupling coefficient K -+ in an

empty waveguide with arbitrary and varying cross section

is

(6)

where ZI is the field-wave impedance.

The finline taper is modeled by a double ridge wave-

guide with varying gap s. With tan +0 = ds/dz, Cll for the

fundamental mode (H mode) can be written as an integral

along both foreheads of the ridges

(7)

E,. is the electric-field distribution normalized to the power

1 of the fundamental mode if +0= O.

According to [2], (7) simplifies to

c= ~dfc
11 fC dz “

(6) and (8) result in

_+_ l–(fC/f)2/2 1 dfC
K ——

l–(fc/f)2 I ‘z “

(8)

(9)

Equation (9) has been derived on the following assump-

tions:

. Itan 00] <<1, i.e., smoothly varying slot contour,

. negligible longitudinal magnetic-field components on

and negligible transversal current density across the

forehead of the ridge (i.e., along the thickness of the

finline metallization) [2],

. TE character of the fundamental mode.

The latter assumption follows from the ridge-waveguide

model. Although the field distribution is not the same, the

dielectric substrate in real finlines can be considered by an

effective dielectric constant k,, which lowers the cutoff
frequency f=. With this cutoff frequency inserted in (9) and

the relation

(5) can be evaluated.

V. DISTRIBUTION OF THE COUPLING COEFFICIENT

(lo)

In (4), the integrand is split into a &dependent part and

the normalizing constant C, so that

jg@K(&)dt=l. (11)

Integrating (5) from & = – O to d with (9), (2), and dt =

UXfo, Z) dz from (3) yields

1()fc(o) 4
C=+ln —

. l–(f.(wfo)’

I

(12)
fc(~) 1-( fc(o)/fo)2 “
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Integrating (5) from –0 to & results in the &dependent

cutoff frequency

fc(c) =fc(o)” [~/2+ @2/’1+ (l- ~)”’xP(4c~(f)) ] ‘“2

(13)

with F=(~C(0)/~0)2 and

1($) =~~OK(&) d~’.

The coupling distribution K(g) along the taper must be

chosen so that the reflection coefficient is below a certain

value R mm for frequencies ~ > ~o. In [3], a procedure is

given to evaluate the coefficients a, in the Fourier series

2n+l

()

K(t)= ~ altos i~$ (14)
~=1,3, . . .

so that the reflection coefficient R(q) from (4) reaches the

value R mu n times for q >1 (i.e., n equal ripples for

~ > fo). With an infinite number of terms, (14) becomes the
Dolph–Chebyshev distribution.

It is characterized by

(15)

for – d < & <0 with D = R~m/C, 6 = arcosh(l/D), II(x)

the modified Bessel function of the first order, and ~(t)

Dirac’s delta function.

The shape of the function K($) in (14) with n = 4

compared with that of (15) is shown in Fig. 1 with D = 0.01

in both cases. The functions are even in $, so only the

branch for & >0 is shown. The shapes of K($) are similar

where both are nonzero. The Dirac’s function at $ = O

makes the Dolph–Chebyshev distribution the shortest pos-

sible taper for a given reflection loss.

Due to the normalization (11) and the symmetry K(t)=

K( – f) we can evaluate the integral in (13)

10, fort=--~

1, for$’=$

(16)

The Bessel function in (16) can be expanded in a power

series [4], and the integral in (16) can be evaluated by

integrating it term by term.

This expansion was previously published in [5], but

because of some misprints there, we give the result once

more

1
0. !6

4i14

K[~]
o.!2

&10

am

0.06

&w

&w

0.00 !-..
0.0 as t.o 1.5 20 2.5 so Ss *O 4,5 so 5.5 60

E—
Fig 1. Normalized coupling distribution for D = 0.01.

—Dolph-Chebyshev (15). ---- cosine-series n = 4 (14).

with

6’2
ao=l

ak=4k(k+l)a~-1

~(1-x2)’+2kb,_l

bo=j b~ =
2k+l

The series converges rapidly, and taking only

makes the relative error smaller than 10 – 5.

(17)

12 terms

Dirac’s function in (15) produces discontinuities at the

taper ends, a fact which might cause problems due to the

excitation of higher order modes. The step in cutoff

frequency can be calculated from (12), (13), and (16)

~=l_R . f~-f:(o)
fc(o) ‘m 2f: – f:(o) “

(18)

The discontinuity at the taper end with the narrow slot is

even smaller. The lower the R ~u chosen, the smaller the

step. For R ma = 0.01 ( ~ – 40 dB) and ~.= 1.4 ~C(0), the

ratio in (18) is 0.997. The Fourier series distribution (14)

does not have this discontinuity. Comparative measure-

ments with both taper types showed that the influence of

the step is negligible.

VI. SYNTHESIZING THE SLOT CONTOUR

Up to now, we have been able to synthesize the function

of the cutoff frequency fC along the taper. It should be

noted that no wave impedances are required for this
synthesis, thus avoiding the problem of finding the ap-

propriate impedance definition.

To obtain the slot width, we need a relation between slot

width and cutoff frequency. This relation should be easy to

evaluate, because it is called at every knot on the z axis. It

is inconvenient to apply spectral-domain techniques [6]–[9],

which are very precise, but time-consuming. The simple

formulas of [10] are limited to special values for the permit-

tivity of the substrate and are not valid for large slot

widths, [11] gives no data for small slot widths, and the

accuracy of the results in [12] seems too poor.
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VII. TRANSVERSAL RESONANCE CONDITION

A new attempt was therefore made to evaluate cutoff

frequency and effective permittivity by a transversal reso-

nance method. The method is valid for arbitrary slot

widths and slot locations. The computed results are com-

pared with data from [8], [10], [11], and [13].

The analysis is based on the following simplifications:

. isotropic, homogeneous, and lossless dielectric layer,

. zero-thickness metallization with infinite conductiv-

ity,

. thickness of substrate small compared with wave-

guide width,

. symmetrically located substrate.

In the dispersion relation (10) for the phase constant ~,

which underlies our taper synthesis, the effective dielectric

constant k= may be approximated as frequency-indepen-

dent [14]

k,= (fcO/fc)2 (19)

with ~CO the cutoff frequency of a finlirte of the same

dimensions and a substrate’s permittivity e;= 1. Equation

(10) is then the dispersion of a homogeneously filled wave-

guide. In the following, our task will be to find the cutoff

frequencies jC and $CO.

A. Bilateral Finline

The cross section of a bilateral finline and its equivalent

transverse network at cutoff are shown in Fig.’2. The

finline is symmetrical with respect to the x = a/2 plane,

where the admittance in the x-direction at cutoff is zero.

The equivalent transverse network for the dominant mode

consists of a capacitive susceptance shunting the TEM

transmission line with short-circuit termination. The cutoff

wavenumber kx is determined by the resonance condition

at reference plane T

–cot(kx.l)++=O ,(20)

with

Bb b
– .kx. (Pw+ e,.P~)

Yb=7r
(21)

where

Pw = ln(csc(aW) Ocsc(~W)) (22)

()P~ = r~. arctan ~ +ln~~ (23)

and

‘7r S d
aw=—. —

2b
r~=;.

/3. =;(1-2;).

The field distortions by the metal fins have been modeled

by the susceptance jBb which is composed of two parts.

The first part models the field distortions left of reference

(a)

mY,
‘d I

b

l&e&~Ee

# #

o x
o T

a

(b)
1;

kuYb j Bb

T

Fig. 2. The cross section of (a) a bilateral finline and (b) its equivalent

transverse network.

!
_!b
k=

096

A - t/GHzr # I 1 , 1
26 28 30 32 34 36 38 40

Fig. 3. Dispersion of a bilateral finline with slot centered in waveguide.

—Simons and Tech [13]. O Our approximation.

plane T. It is taken from Marcuvitz’s Waveguide Handbook
[15, p. 218], where the susceptance of a window of zero

thickness in a rectangular waveguide has been derived. In

fact, it is sufficient to take just the first term in Pw into

account (22) because the other terms influence the results

by less than 0.2 percent.

The second part models the field distortion between

plane T and the symmetry plane x = tz/2. It has been

taken from the equivalent circuit of an open .E-piane T
junction (see [15, p. 337]). Due to the symmetry with

respect to x= a/2, this part of the susceptance is char-

acterized only by the susceptance jB~ of the equivalent

circuit in [15].

The first zero of kx in (20) is the cutoff wavenumber for

the fundamental mode. The cutoff frequencies fco and jC

are obtained from kx with g,= 1 and e, # 1, respectively.
Numerical results have been compared to those taken from

[10] and a disagreement of less than 1 percent has been

found, (Setting e,= 2.22, (~,=. b) varies between 0.1

and 0.2 for d/b between 1/32 and 3/4. In all cases, the

deviations are smaller than 0.001.) Fig. 3 shows dispersion

in a bilateral finline of relatively small slot width. The

agreement with results taken from [13] is very good.
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—x

o T a

(a)

a ‘J

f=!’
(b)

I T l-cm~b j B. y~

T
(c)

Fig. 4. The cross section of (a) a unilateral finline, (b) its equivalent
transverse network for E, =1, and (c) for E, # 1.

B. Unilateral Finline

Unilateral finline is often preferred because it is easy to

fabricate and semiconductor devices are simple to mount.

The cross section of this finline is shown in Fig. 4. The thin

metal layer is placed at the x = a/2 plane, so that the

structure is symmetrical for E,= 1. It is useful to construct

two equivalent transverse networks at cutoff for the domi-

nant mode: one for E, = 1 and another for e,+ 1 (Fig. 4).

The equivalent network for E,= 1 consists simply of a

transmission line of length a/2 which is short-circuited at

one end and shunted by jBw at the other. The shunt

susceptance can be taken from (21) and (22).

The cutoff wavenumber ICXO in the air-filled ridged

waveguide is determined by the resonance condition at

reference plane T

–cot(k..o.l)+*=o

with

B%, b
– .kxO.Pw.

xb=7r

(24)

(25)

Pw is given by (22). The equivalent network in Fig. 4(c) is

formed by a susceptance jBu shunted by two TEM trans-

mission lines with short-circuit terminations. The relation

governing cutoff of the HIO mode is given by

–cot(kX.l) –cot[kX. (ki)]+~=O (26)

with

Bu b
– .kx. [2PW+ c,(p~+ ‘6)]

Yfi=fr
(27)

+
1.6-

1.4-

1.2-

1.0-

‘f

. . .

o-~

‘“’~fl..z
26 30 34 38

(a)

l.&–

1.o- C 0

-1

‘“~f,...
40 45 so 55 m

(b)

Fig. 5. Dispersion of unilateral finline with (a) WR(28) and (b) WR(19)

shield. Fins are centered. —Spectraf-domain technique: Knorr and

Shayda [8]. @ Our approximation.

where

()P~ = rb. arctan ~ + ln~~ (28)

and

The susceptance jBu
ing the susceptance of

dr~=—.
b

has been constructed by superpos-

the window (the term proportional

to 2PW) and another susceptance (the term proportional to

er( P~ + Pb)) representing the influence of the dielectric and

the transformation through the layer of length d. While Pw
(22) and P. (23) have already been given, P~ in (28) has

been taken from [15, p. 337].

The unilateral finline with metal fins centered in the

waveguide (Fig. 4) has been analyzed in [8], [10], and [13].

Other authors have considered a unilateral finline with the

dielectric layer symmetrically located in the waveguide [6],

[9]. The modifications of (24) and (26) for this case are easy

to carry out.
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1.0
y. ~

bO -

-1.0

40 .

-LO

0244 SfO12 1414ma *mm

z—

Fig. 6. Taper contour. Design data: ~O=12.3GHz, Rm==–30dB. —
—Dolph–Chebyshev. ---- cosine-series n =4.

-20

-25

+a

-35

-40

12.4 1$ 14 15 16 17 18
<m+,

Fig. 7. Return lossofdouble taper according to Fig.6,

Dolph–Chebyshev.

Comparing the cutoff wavenumber of the unilateral

finline with results published in [10] yields deviations of

less than 1.5 percent if d/a<l/8. This restriction is,

however, usually fulfilled for practical finlines. Some dis-

persion curves are presented in Fig. 5 showing good agree-

ment (better than 3 percent) with published results. The

authors’ results deviate from those calculated with Hoefer’s

diagram for the slot capacitance [11] less than 0.5 percent.

This diagram, however, gives only data for a normalized

slot width s/b >0.1.

VIII. SYNTHESISPROCEDURE

The synthesis procedure can now be summarized as

follows.

1) Choose the cutoff frequency ~0 of the taper and the

maximum input reflection coefficient R ~= for ~ > ~o.

Choose an appropriate step width Az for the longitudinal

coordinate. If the taper is eccentric, select a relation be-
tween slot width s and eccentricity e (Figs. 2(a) and 4(a))

to achieve a unique function .s(~C) from the characteristic

equation. A linear function

e(s(z))= e(0)+
e(l)– e(0)

S(l)–s(o)
(s(z) -s(0)) (29)

-15

-20

-25

-30

-35

-40

26.5 30 35 f/GHz
40

Fig. 8. Return loss of double taper R ~= = – 20 dB, DolPh–Chebyshev.
—Measured. ---- calculated.

guarantees that the slot edges never exceed the waveguide

height.

2) Determine ~c(0) and ~C(l) from s(O) and s(l) and the

transverse resonance condition.

3) Determine the normalization factor C from (12). ~

4) Set initial values z = O, t = – 0, and s = s(O).

5) Next take z: = z + Az. Evaluate the related $(z) from

(3) as c: = t + 2~(fo, z)”Az, fC from -(13), and s from the

transversal resonance condition with kx = 2mfc& ~E.
6) Repeat 5) until the final slot width is reached.

IX. EXPERIMENTAL RESULTS

Several double-tapers were fabricated on RT/Duroid

5880 in, WR-62 (and WR-28) housing. They lead from the

empty waveguide to a slot width of 0.2 mm and back again

to the empty waveguide. The slot was located either in the

center or 3 mm (1.5 mm) below, R ~= was chosen to be

– 20, – 30, – 35, – 40, and – 60 dB. To estimate the

influence of the steps in the Dolph–Chebyshev profile, a

set of tapers with the cosine-series coupling distribution

(14) was also made.

The dynamic range of the measurement equipment was

– 40 dB (– 35 dB) for the reflection coefficient, restricted

by the waveguide termination behind the tapers. No dou-

ble-taper (except the 20-dB type) turned out to be worse

than – 25 dB in the return loss from 12.4 to 18 GHz (26.5

to 40 GHz), and most of them were better than – 30 dB.

The taper length for a taper designed for – 30 dB is only

18 mm (8.2 mm), which is 0.75 free-space wavelengths at

the lower frequency limit.

The results of the measurements can be summarized as

follows.

1) There is no significant difference in the performance

of cosine-series and Dolph–Chebyshev profile tapers. The

steps in the profile apparently have no influence.



1644 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 12, DECEMBER 1984

sll/dB

-15

-20

-25

-30

-35

-40

26.5 30 35 f/GHz
40

Fig. 9. Return lOSS of double taper. Design data: ~.= 26 GHz, Rma =

– 30 dB, length 8.2 mm, centered slot.

2) Designing the taper for reflection loss better than

– 35 dB does not improve the performance. The taper may

even become worse. This probably means that the accuracy

limit of the transversal resonance method has been

reached.

3) Tapers with a return loss of – 30 dB or better should

be fabricated within ~ 5 percent in slot width.

For lower requirements, however, tolerances are not so

critical: For a maximum reflection coefficient of – 20 dB,

a profile shift of +20 percent is admissible.

Fig. 6 shows the slot profile of a – 30-dB Ku-band

eccentric taper with cosine-series and Dolph–Chebyshev

profile. Fig. 7 shows the input reflection of the corre-

sponding double taper. Fig. 8 compares the measured input

reflection of a 20-dB double taper compared with values

calculated by direct integration of the coupled wave equa-

tions [3] with phase constant /3( ~, z ) and coupling coeffi-

cient K ‘+ (~, z). Finally, Fig. 9 shows the performance of a

– 30-dB taper in I@band. Insertion loss was about 0.3 dB

for any double taper.

X. CONCLUSION

A fast and precise method has been presented for the

design of optimum finline tapers with arbitrary slot widths

and locations. The method can be applied for tapers down

to – 35-dB return loss. An even better performance maybe

obtained with a more exact relation between slot width and

cutoff frequency, involving more computer time. The prac-

tical results would be doubtful, however, because require-

ments for mechanical tolerances become very stringent.

The design procedure can also be applied to antipodal

finlines, provided that a relation between slot width and

cutoff frequency is known. The tapers have already been

successfully applied to finline circulators, phase modula-

tors, mixers, and oscillators.
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Short Papers

Quarter-Wave Matching of
Waveguide-to-Finline

Transitions ‘ ~

CORNELIUS J. VERVER, MEMBER, IEEE, AND WOLFGANG J.R. HOEFER, SENIOR MEMBER, IEEE

Abstract —This paper presents closed-formexpressions for the design of

a qnarter-wave transition-matching transformer. This structure takes tJre

form of a notch or protrusion cut in the finfhre substrate at the waveguide-

to-finkre interface. The dimensions of the transformer are calculated using

a homogeneous waveguide model for the partiafly loaded sections. The

characteristics of tJris model are found with perturbation theory. Severaf

transformers were designed and measured. A 5-dB improvement in return

loss over a full wavegnide band is typical.

I. INTRODUCTION

E -PLANE CIRCUIT technology is now well established

as a viable approach to millimeter-wave circuit realiza-

tion and integration. Indeed, almost all important circuit

functions have been successfully realized in this technology

using integrated finline as the principal transmission

medium. E-plane circuits consist of metallic fin pattern

deposited on a thin substrate which is suspended in the

E-plane of a standard waveguide enclosure. -

For obvious reasons, such circuits must be made compat-

ible with standard waveguide components and test

equipment. In most cases, this is accomplished through a

printed taper, a finline section in which the gap between

the fins is gradually narrowed from the waveguide height

b, to its final width d, as shown in Fig. 1.
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Fig. 1. Tapered waveguide to finline transition.

A critical look at Fig. 1 reveals that even for an optimal

taper profile the transition could not be reflectionless be-

cause of the dielectric discontinuity y at the taper ‘front. For

typical finline substrates and geometries, the return loss

due to this discontinuity is approximately 27 dB.

In order to minimize the effect of the “dielectric step,”

various researchers [1]–[5] have introduced a quarter-wave

transformer section in the form of either a notch or a

protrusion, as shown in Fig. 2.

One can only surmise from the literature that the dimen-

sions of these transformers have been determined by trial

and error. In this paper, therefore, design expressions will

be developed to determine the dimensions of quarter-wave

notches and protrusions. Measured data will be presented

to demonstrate the validity of the new formulas as well as

the improvement in reflection loss achieved by such a

structure.

It may be noted here that in spite of the inherently

narrow bandwidth of quarter-wave transformers, the
improvement in return loss is significant over a complete

waveguide band, about 5 dB. Only for very broad-band

applications will it become necessary to use multistep

transformers. However, in such a case, the waveguide en-
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